# The efficiency of wastewater plants: enquiring and modelling the factors affecting the performance

A.Guerrini – G.Romano – Pisa, 3 June 2015 <a href="mailto:andrea.guerrini@univr.it">andrea.guerrini@univr.it</a>, <a href="mailto:giulia.romano@unipi.it">giulia.romano@unipi.it</a>





### Identification of the objectives

Resource allocation No resource allocation 1) Performance evaluation among internal units operating in a firm 2) Process of target assignment to internal units operating in a firm (internal perspective- management internal (internal perspective - planning) control) benchmarking external 3) Providing reputational incentives through performance comparison and 4) Assign resources among different companies through performance publication of different firms (external comparison (yardstick competition) perspective - social control)

### The methods available

- Set of key performance indicators (scorecarding)
  - + performance can be observed from different perspectives;
  - it is not easy to obtain an aggregated and single measure to make firms comparison.
- Parametric tecniques (regression)
  - + indentification of performance drivers;
  - - single perspective (cost or services).
- Non parametric tecniques (Data Envelopment Analysis)
  - + aggregation of many perspectives in a single score
  - difficulties to disentangle the score obtained

# Objectives and methods applied in some European countries

- Set of indicators to realize the so called sunshine regulation (Netherlands-VEWIN and Danmark-DANVA);
- Regression models to understand the determinants affecting utilities' performance and to identify value drivers (Danmark-regulatory benchmarking);
- Data Envelopment Analysis for efficiency estimation (Danmark-regulatory benchmarking).

### The Danish regulatory model for wastewater services

| Pipes                                                            | Pump stations                                                                                                 | Rainwater<br>pools          | Sewage<br>pools                       | Mini<br>WWTPs            | WWTPs                                                                                 | Sludge<br>treatment                                         | Customers     |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|--------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|
| Kms of pipes in the zones: • Country + town, • City • Inner-city | Nr. of stations in the categories:  • Household pumps  • 0-10 l/t  • 11-100 l/t  • 101-600 l/t  • 601-max l/t | Total<br>number of<br>pools | Total<br>number<br>of sewage<br>pools | Total<br>number<br>of TP | Capacity (PE) loads in the category:  •M  •MB  •MBNK  •MBNKD (country)  •MBNKD (town) | Tons of dry matter in the category: • A-sludge • B+C-sludge | Nr. of meters |

# The Danish regulatory model: the regression functions for cost estimations

| Cost drivers     | Cost equivalents                                                                                                                            |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pipes            | $Y = 4.279(X_1 + X_2) + 87.088(X_3 + X_4)$                                                                                                  |  |  |  |  |
| Pump stations    | $Y = 6,628X_1 + 13,891X_2 + 24,337X_3 + 102,864X_4 + 597X_5$                                                                                |  |  |  |  |
| Rainwater pools  | $Y=13,523X_1$                                                                                                                               |  |  |  |  |
| Sewage pools     | $Y = 19.74X_1$                                                                                                                              |  |  |  |  |
| Mini WWTPs       | $Y = 2,540X_1$                                                                                                                              |  |  |  |  |
| WWTP             | $Y=1,581.92X_{1}^{0.67}+2,991.14X_{2}^{0.67}+3,113.49X_{3}^{0.67}+3,27\\ 9.19X_{4}^{0.67}+3,891.82X_{5}^{0.67}+4,076.24X_{6}^{0.67}+373.65$ |  |  |  |  |
| Sludge treatment | $Y=3,965.4X_1+4,747.7(X_2+X_3)$                                                                                                             |  |  |  |  |
| Customers        | $Y = 120.8X_1$                                                                                                                              |  |  |  |  |

# Benchmarking of WWTPs. A case study in Tuscany

- October 2014 discussion of a benchmarking project with water local authority;
- October 2014 –A tuscans water firms provides its interest to test a benchmarking model on its WWTPs;
- November/December 2014 definition of a grid of data, with the collaboration of a water firm and AIT staff;
- Jenuary/March 2015 data collection
- April 2015 statistical tests and data analysis
- June 2015 Data presentation

# The grid of data - input and output variables

| INPUT                                            | OUTPUT                                 |
|--------------------------------------------------|----------------------------------------|
| Cost of materials (reagents and other materials) | Kg removed of BOD5                     |
| Cost of Energy                                   | Kg removed of COD                      |
| Staff cost                                       | Kg removed N                           |
| Maintenance cost                                 | Kg removed P                           |
|                                                  | Kg sludge (wet matter)                 |
| Costs for sludge trasport and disposal           | % dry matter obtained                  |
|                                                  | Kg other wastes                        |
|                                                  | Cubic meter of water treated           |
|                                                  | % non complied controls with env. std. |

# The grid of data – Environmental and operating variables

| Plant capacity                                         | Person Equivalent |
|--------------------------------------------------------|-------------------|
| PE working capacity/PE theoric capacity                | %                 |
| % diluition of wastewater inflow                       | %                 |
| % wastewater from non domestic customers               | %                 |
| Year of building                                       |                   |
| Type of sewerage system (S-separated; M-mixed)         | S/M               |
| Sludge treatment (YES/NO)                              | YES/NO            |
| Type of plans (primary-1/secondary-2/terziary-3)       | 1/2/3             |
| Type of secondary treatment (FA-active sludge; A-other | ) FA/A            |
| Type of aeration system (P-punctual; D-widespread)     | P/D               |
| Plant authorized with derogation                       | YES/NO            |
| Av. concentration of BOD5 (inflow)                     | mg/l              |
| Av. concentration of COD (inflow)                      | mg/l              |
| Av. concentration of N (inflow)                        | mg/l              |
| Av. concentration of P (inflow)                        | mg/l              |
| % of sludge disposed in landfill                       | %                 |
| % of sludge given to composting plants                 | %                 |
| % of sludge given to agricolture                       | %                 |
| % of sludge given to incinerator plant                 | %                 |
| Distance between WWTP and sludge treatment plant       | km                |

# Statistical model – backward process

#### **OLS model**

y= total plant costs for 2014

x= output and operating and environmental variables

 $\beta$  = average amount by which y increases or decreases when the x increases

$$y = \sum_{i=1}^{n} \beta_{i} * x_{i}$$

- **Extended model**: all the 20 exhogenous variables collected were observed
- Reduced model: observes only the 9 statistically significant variables of the extended model

### Results obtained

capacity

customers

process

Sludge
diposal

| Reduced model                                | R=0.9675          |
|----------------------------------------------|-------------------|
|                                              | ESTIMATORS        |
| kg of N removed                              | positive**        |
| kg of sludge removed                         | positive**        |
| kg of other wastes removed                   | positive***       |
| Plant capacity (PE)                          | negative***       |
| % of wastewater from non domestic customers  | positive*         |
| Presence of a sludge treatment plant         | (YES) positive*** |
| Plant authorized to not comply with env. law | (YES) negative*** |
| % of sludge provided to composting plant     | negative***       |

### 1) Identification of cost drivers



### Evidences from prior studies

A number of publications have focused on analysing the managerial efficiency of water supply companies (e.g. Anwandter and Ozuna, 2007; Byrmes et al., 2008; Saal and Parker, 2009; Schaefer, 2010). However, the application of such tools in the field of wastewater treatment plants (WWTPs) has remained limited (but see Hernandez-Sancho et al. 2011; Hsiao et al., 2012).

**Hernandez-Sancho et al., 2011**: sample of 196 WWTPs located in the Valencia Region, 2003–2008. Efficiency was affected by the significant **economies of scale** and the type of technology in use. **Energy consumption** is a key factor towards improving the productivity of WWTPs;

Hernández-Sancho et al. (2011a): it applied a nonradial Data Envelopment Analysis (DEA) to a sample of Spanish WWTPs. Results showed that plant size, quantity of eliminated organic matter, and bioreactor aeration type are significant variables affecting energy efficiency of WWTPs.

**Senante et al. (2014):** it confirms that all inputs are affected **by economies of scale**. As expected from other empirical applications (Dogot et al. 2010; Zessner et al. 2010), the mean efficiency for all inputs was greater for WWTPs with **higher PE** than for smaller plants. Regarding individual scores, all of the plants indicated that **older plants are less efficient** than younger plants.

### 2) Target cost estimation

- Estimation of predicted value for each firms in order to assign target in terms of cost.
- A comparison between actual and target costs gives favorable (actual < target) or unfavorable variances (actual > target).
- The weight of variance on actual costs signals the importance of the measured efficiency/inefficiency

### 2) Target cost estimation

| WWTPs   | Target cost | Actual cost | Variance  | Weight of variance |
|---------|-------------|-------------|-----------|--------------------|
| Dep 015 | 1,000,000   | 1,200,000   | - 200,000 | -16.67%            |
| Dep 016 | 900,000     | 700,000     | 200,000   | 28.57%             |
| Dep 017 | 650,000     | 658,000     | - 8,000   | -1.22%             |



# 3) A planning tool to project a plant

X are the characteristics of a WWTP, hypothesized before its construction; Y is the target operating cost referred to each projected plant

$$y = \sum_{i=1}^{n} \beta_{i} * x_{i}$$

| Cost Driver                            |         | <b>Estimators</b> | Target cost |
|----------------------------------------|---------|-------------------|-------------|
| Capacity                               | 100,000 |                   |             |
| Kg N removed                           |         | 9.155474          |             |
| kg P removed                           |         | -4.208719         |             |
| kg sludge removed                      |         | 0.0128879         |             |
| kg other wastes removed                |         | 0.656516          |             |
| Capacity                               | 100,000 | -4.390983         |             |
| % wastewater non domestic customer     | 50%     | 73277.24          |             |
| Sludge treatment plant                 | yes     | 196048.8          |             |
| Derogation                             | no      | -56706.84         |             |
| % sludge disposal in composting plants | 10%     | -164072.4         |             |

# 3) A planning tool to project a plant

X are the characteristics of a WWTP, hypothesized before its construction; Y is the target operating cost referred to each projected plant

$$y = \sum_{i=1}^{n} \beta_{i} * x_{i}$$

| Cost drivers                           |           | <b>Estimators</b> | Target costs |
|----------------------------------------|-----------|-------------------|--------------|
| Capacity                               | 100,000   |                   |              |
| Kg N removed                           | 200,000   | 9.155474          |              |
| kg P removed                           | 74,000    | -4.208719         |              |
| kg sludge removed                      | 3,500,000 | 0.0128879         |              |
| kg other wastes removed                | 250,000   | 0.656516          |              |
| Capacity                               | 100,000   | -4.390983         |              |
| % wastewater non domestic customer     | 50%       | 73277.24          |              |
| Sludge treatment plant                 | yes       | 196048.8          |              |
| Derogation                             | no        | -56706.84         |              |
| % sludge disposal in composting plants | 10%       | -164072.4         |              |

# 3) A planning tool to project a plant

X are the characteristics of a WWTP, hypothesized before its construction; Y is the target operating cost referred to each projected plant

$$y = \sum_{i=1}^{n} \beta_{i} * x_{i}$$

| Cost drivers                            |           | <b>Estimators</b> |    | Target costs |
|-----------------------------------------|-----------|-------------------|----|--------------|
| Potenzialità                            | 100.000   |                   | €  | 1.506.068    |
| kg rimossi n                            | 200.000   | 9.155474          | €  | 1.831.094    |
| kg rimossi p                            | 74.000    | -4.208719         | -€ | 311.445      |
| kg fango                                | 3.500.000 | 0.0128879         | €  | 45.107       |
| kg altri rifiuti                        | 250.000   | 0.656516          | €  | 164.129      |
| potenzialità                            | 100.000   | -4.390983         | -€ | 439.098      |
| perc reflui da attività produttive      | 50%       | 73277.24          | €  | 36.638       |
| trattamento fanghi si 1 no 0            | 1         | 196048.8          | €  | 196.048      |
| impianto in deroga 1 si 0 no            | 0         | -56706.84         | €  | -            |
| perc smaltimento fanghi in compostaggio | 10%       | -164072.4         | -€ | 16.407       |

### Potentials and risk of a benchmarking tool for Tuscan water utilities

- Progressive extension of benchmarking process among the 7 water firms operating in Tuscany.
- Blinded performance comparison in the first stage, whose evidence would be shared only among water utilities
- Implementation of sunshine regulation, without any effect on resources allocations;
- Improvements of the statistic model choosing among alternatives methods (DEA, SFA ecc.).