Water pollution in wastewater treatment plants: an efficiency analysis with undesirable output

Laura Carosi¹ Giovanna D'Inverno² Andrea Guerrini³ Giulia Romano¹

¹Department of Economics and Management University of Pisa

²IMT School for Advanced Studies Lucca,

³Department of Management, University of Verona

3rd International Seminar on Water Resources Management Pisa, January 27

Institutional framework

- The present paper has been carried out with the collaboration of the water utility Acque Spa and the consulting company Ingegnerie Toscane
- Autorità Idrica Toscana (Tuscan Water Authority)

Regional act 69, 2011 December 28

Conferenze territoriali

From 1994 to 2012, Autorità di Ambito territoriale ottimale (Local Water Authority)

• Conferenza Territoriale n. 2 "Basso Valdarno"

Aims and motivations

2030 Agenda for Sustainable Development Goal 6, UN General Assembly (2015)

- Ensure access to water and sanitation for all
- By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally (Target 6.3)

Aims and motivations

2030 Agenda for Sustainable Development Goal 6, UN General Assembly (2015)

- Ensure access to water and sanitation for all
- By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally (Target 6.3)
- It's almost impossible to completely remove all the dangerous elements

Aims and motivations

2030 Agenda for Sustainable Development Goal 6, UN General Assembly (2015)

- Ensure access to water and sanitation for all
- By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally (Target 6.3)
- It's almost impossible to completely remove all the dangerous elements
- Nitrogen is considered the most relevant one:
 - eutrophication
 - reduction of crop quality
 - pollution of groundwater
 - death of aquatic life

... aims and motivations

We aim at

O assessing the environmental efficiency of wastewater treatment plants

- the nitrogen concentration in outgoing water is treated as undesirable output

... aims and motivations

We aim at

assessing the environmental efficiency of wastewater treatment plants

- the nitrogen concentration in outgoing water is treated as undesirable output

identifying the efficiency explanatory variables

- population equivalent size
- estimated dry weather flow
- treatment technology

Related literature

- There is a huge amount of quantitative studies on water and sanitation services (WSS)
 - Berg and Marques (2011)
 - Worthington (2014)
- Data Envelopment Analysis (DEA) is the most used technique

Related literature

- There is a huge amount of quantitative studies on water and sanitation services (WSS)
 - Berg and Marques (2011)
 - Worthington (2014)
- Data Envelopment Analysis (DEA) is the most used technique
- A restricted number of studies takes into consideration the efficiency of wastewater treatment plants (Spain, Italy, Taiwan)
 - Fuentes et al. (2015)

5 / 18

Related literature

- There is a huge amount of quantitative studies on water and sanitation services (WSS)
 - Berg and Marques (2011)
 - Worthington (2014)
- Data Envelopment Analysis (DEA) is the most used technique
- A restricted number of studies takes into consideration the efficiency of wastewater treatment plants (Spain, Italy, Taiwan)
 - Fuentes et al. (2015)
- Undesirable output in the water framework

Authors - Years	Undesirable output
Picazo-Tadeo et al. (2008)	Unaccounted-for-water losses
De Witte and Marques (2010)	Water losses
Hernández-Sancho et al. (2012)	Water losses
Molinos-Senante et al. (2014)	CO ₂ emission
Molinos-Senante et al. (2015) and (2016)	Lack of service quality

Modelling undesirable output

An undesirable output is characterized by null-jointness and weak disposability (Färe et al., 1989).

Modelling undesirable output

An undesirable output is characterized by null-jointness and weak disposability (Färe et al., 1989).

There exist different approaches for handling undesirable outputs (Liu et al., 2016):

- ignoring undesirable outputs;
- **2** adding a sufficiently large positive number $(-y_b + M)$ to the additive inverse of the undesirable outputs (Ali and Seiford, 1990; Seiford and Zhu, 2002). In our case, the natural choice for M is M = 1;
- radial directional distance function approach (Chambers et al., 1996, 1998; Färe and Grosskopf, 2004);
- non-radial directional distance function approach (Fukuyama and Weber, 2009; Zhou et al., 2012) (constant return to scale).

6 / 18

Modelling undesirable output

An undesirable output is characterized by null-jointness and weak disposability (Färe et al., 1989).

There exist different approaches for handling undesirable outputs (Liu et al., 2016):

- ignoring undesirable outputs;
- 2 adding a sufficiently large positive number $(-y_b + M)$ to the additive inverse of the undesirable outputs (Ali and Seiford, 1990; Seiford and Zhu, 2002). In our case, the natural choice for M is M = 1;
- radial directional distance function approach (Chambers et al., 1996, 1998; Färe and Grosskopf, 2004);
- non-radial directional distance function approach (Fukuyama and Weber, 2009; Zhou et al., 2012) (constant return to scale).

Our approach

We perform an efficiency analysis with undesirable output by using a suitable AHP-non-radial directional function and by assuming variable return to scale (Kuosmanen, 2005).

Carosi, D'Inverno, Guerrini, Romano

The model

- $\beta = (\beta_x, \beta_y, \beta_b)$ is the directional vector function
- $g = (g_x, g_y, g_b)$ is the explicit directional vector

$$\begin{array}{ll} \max & \beta = (\beta_x, \beta_y, \beta_b) \\ \text{s.t.} & \sum_{\substack{k=1 \\ K}} (\lambda^k + \mu^k) x_n^k \leq x_n + g_{x_n} \beta_{x_n}, \forall n \\ & \sum_{\substack{k=1 \\ K}} \lambda^k y_m^k \geq y_m + g_{y_m} \beta_{y_m}, \forall m \\ & \sum_{\substack{k=1 \\ K}} \lambda^k b_j^k = b_j + g_{b_j} \beta_{b_j}, \forall j \\ & \sum_{\substack{k=1 \\ K}} \lambda^k + \mu^k = 1 \\ & \lambda^k, \mu^k \geq 0, \forall k \\ & \beta_{x_n} \geq 0, \beta_{y_m} \geq 0, \beta_{b_j} \geq 0 \forall n, \forall m, \forall j \end{array}$$

Carosi, D'Inverno, Guerrini, Romano

A B F A B F

- 2

The model

- $\beta = (\beta_x, \beta_y, \beta_b)$ is the directional vector function
- $g = (g_x, g_y, g_b)$ is the explicit directional vector

$$\begin{array}{ll} \max & \beta = \left(\beta_{x}, \beta_{y}, \beta_{b}\right) \\ \text{s.t.} & \sum_{k=1}^{K} \left(\lambda^{k} + \mu^{k}\right) x_{n}^{k} \leq x_{n} + g_{x_{n}} \beta_{x_{n}}, \forall n \\ & \sum_{k=1}^{K} \lambda^{k} y_{m}^{k} \geq y_{m} + g_{y_{m}} \beta_{y_{m}}, \forall m \\ & \sum_{k=1}^{K} \lambda^{k} b_{j}^{k} = b_{j} + g_{b_{j}} \beta_{b_{j}}, \forall j \\ & \sum_{k=1}^{K} \lambda^{k} + \mu^{k} = 1 \\ & \lambda^{k}, \mu^{k} \geq 0, \forall k \\ & \beta_{x_{n}} \geq 0, \beta_{y_{m}} \geq 0, \beta_{b_{j}} \geq 0 \forall n, \forall m, \forall j \end{array}$$

Input model $\beta = (\beta_x)$ g = (-x, 0, 0)No und. model $\beta = (\beta_x, \beta_y)$ g = (-x, y, 0)All variable model $\beta = (\beta_x, \beta_y, \beta_b)$ g = (-x, y, -b)

- 3

Scalar problem

$$\begin{split} \max & \sum_{n \in N} w_{x_n} \beta_{x_n} + \sum_{m \in M} w_{y_m} \beta_{y_m} + \sum_{b \in J} w_{b_j} \beta_{b_j} \\ \text{s.t.} & \sum_{\substack{k=1 \\ K}} (\lambda^k + \mu^k) x_n^k \leq x_n + g_{x_n} \beta_{x_n}, \forall n \\ & \sum_{\substack{k=1 \\ K}} \lambda^k y_m^k \geq y_m + g_{y_m} \beta_{y_m}, \forall m \\ & \sum_{\substack{k=1 \\ K}} \lambda^k b_j^k = b_j + g_{b_j} \beta_{b_j}, \forall j \\ & \sum_{\substack{k=1 \\ K}} \lambda^k + \mu^k = 1 \\ & \lambda^k, \mu^k \geq 0, \forall k \\ & \beta_{x_n} \geq 0, \beta_{y_m} \geq 0, \beta_{b_j} \geq 0 \forall n, \forall m, \forall j \end{split}$$

Carosi, D'Inverno, Guerrini, Romano

- < A

A B F A B F

3

Scalar problem

$$\begin{split} \max & \sum_{n \in N} w_{x_n} \beta_{x_n} + \sum_{m \in M} w_{y_m} \beta_{y_m} + \sum_{b \in J} w_{b_j} \beta_{b_j} \\ s.t. & \sum_{\substack{k=1 \\ K}} (\lambda^k + \mu^k) x_n^k \leq x_n + g_{x_n} \beta_{x_n}, \forall n \\ & \sum_{\substack{k=1 \\ K}} \lambda^k y_m^k \geq y_m + g_{y_m} \beta_{y_m}, \forall m \\ & \sum_{\substack{k=1 \\ K}} \lambda^k b_j^k = b_j + g_{b_j} \beta_{b_j}, \forall j \\ & \sum_{\substack{k=1 \\ K}} \lambda^k + \mu^k = 1 \\ & \lambda^k, \mu^k \geq 0, \forall k \\ & \beta_{x_n} \geq 0, \beta_{y_m} \geq 0, \beta_{b_j} \geq 0 \forall n, \forall m, \forall j \end{split}$$

The choice of w

Two distinct levels of weights

• global weights:
$$w_x$$
, w_b , w_y ,
 $w_x + w_b + w_y = 1$.

• weights for each group (inputs, good and bad outputs)

$$\sum_{n \in N}^{W_{x_n}, W_{y_m}, W_{b_j}} \sum_{n \in N} w_{x_n} = w_x, \sum_{m \in M} w_{y_m} = w_y,$$
$$\sum_{b \in J}^{N} w_{b_j} = w_b$$

Scalar problem

$$\begin{split} \max & \sum_{\substack{n \in N \\ K}} w_{x_n} \beta_{x_n} + \sum_{\substack{m \in M \\ m \in M}} w_{y_m} \beta_{y_m} + \sum_{\substack{b \in J \\ b \in J}} w_{b_j} \beta_{b_j} \\ s.t. & \sum_{\substack{k=1 \\ K}} (\lambda^k + \mu^k) x_n^k \leq x_n + g_{x_n} \beta_{x_n}, \forall n \\ & \sum_{\substack{k=1 \\ K}} \lambda^k y_m^k \geq y_m + g_{y_m} \beta_{y_m}, \forall m \\ & \sum_{\substack{k=1 \\ K}} \lambda^k b_j^k = b_j + g_{b_j} \beta_{b_j}, \forall j \\ & \sum_{\substack{k=1 \\ K}} \lambda^k + \mu^k = 1 \\ & \lambda^k, \mu^k \geq 0, \forall k \\ & \beta_{x_n} \geq 0, \beta_{y_m} \geq 0, \beta_{b_j} \geq 0 \forall n, \forall m, \forall j \end{split}$$

The choice of w

Two distinct levels of weights

• global weights:
$$w_x, w_b, w_y, w_x + w_b + w_y = 1.$$

• weights for each group (inputs, good and bad outputs)

$$\sum_{n \in N}^{W_{x_n}, W_{y_m}, W_{b_j}} \sum_{m \in N} w_{x_n} = w_x, \sum_{m \in M} w_{y_m} = w_y,$$

$$\sum_{b \in J}^{n \in N} w_{b_j} = w_b$$

Zhou et al. (2012)

147 147

•
$$w_x = w_b = w_y = 1/3$$

•
$$W_{x_n} = \frac{w_x}{N}$$
, $W_{y_m} = \frac{w_y}{M}$ $W_{b_j} = \frac{w_b}{J}$

Scalar problem

$$\begin{split} \max & \sum_{\substack{n \in N \\ K}} w_{x_n} \beta_{x_n} + \sum_{\substack{m \in M \\ m \in M}} w_{y_m} \beta_{y_m} + \sum_{\substack{b \in J \\ b \in J}} w_{b_j} \beta_{b_j} \\ s.t. & \sum_{\substack{k=1 \\ K}} (\lambda^k + \mu^k) x_n^k \leq x_n + g_{x_n} \beta_{x_n}, \forall n \\ & \sum_{\substack{k=1 \\ K}} \lambda^k y_m^k \geq y_m + g_{y_m} \beta_{y_m}, \forall m \\ & \sum_{\substack{k=1 \\ K}} \lambda^k b_j^k = b_j + g_{b_j} \beta_{b_j}, \forall j \\ & \sum_{\substack{k=1 \\ K}} \lambda^k + \mu^k = 1 \\ & \lambda^k, \mu^k \geq 0, \forall k \\ & \beta_{x_n} \geq 0, \beta_{y_m} \geq 0, \beta_{b_j} \geq 0 \forall n, \forall m, \forall j \end{split}$$

The choice of w

Two distinct levels of weights

• global weights:
$$w_x$$
, w_b , w_y ,
 $w_x + w_b + w_y = 1$.


• weights for each group (inputs, good and bad outputs)

$$\sum_{n \in N}^{W_{x_n}, W_{y_m}, W_{b_j}} \sum_{m \in N} w_{x_n} = w_x, \sum_{m \in M} w_{y_m} = w_y,$$
$$\sum_{b \in J}^{N} w_{b_j} = w_b$$

Zhou et al. (2012)

•
$$w_x = w_b = w_y = 1/3$$

•
$$W_{x_n} = \frac{w_x}{N}$$
, $W_{y_m} = \frac{w_y}{M}$ $W_{b_j} = \frac{w_b}{J}$

Carosi, D'Inverno, Guerrini, Romano

DEA model for WWTPs

• The Decision Maker is asked to pairwise compare inputs, outputs and undesirable outputs at a global level. The comparison yields a number which is determined on the basis of the following scale

• The Decision Maker is asked to pairwise compare inputs, outputs and undesirable outputs at a global level. The comparison yields a number which is determined on the basis of the following scale

Intensity	Definition
1	Equal Importance
3	Moderate importance
5	Strong importance
7	Very Strong importance
9	Extreme importance

•
$$a_{ij} > 0$$
, $a_{ii} = 1$ and $a_{ij} = \frac{1}{a_{ji}} \forall i, j$.

Pairwise comparison matrix

	x	у	Ь
x	(a_{xx})	a _{xy}	a _{xb} \
у	a _{yx}	a_{yy}	a _{yb}
b	$\langle a_{bx} \rangle$	a_{by}	а _{ьь} /

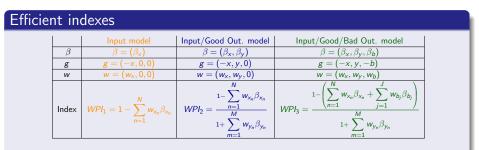
9 / 18

• The Decision Maker is asked to pairwise compare inputs, outputs and undesirable outputs at a global level. The comparison yields a number which is determined on the basis of the following scale

Intensity	Definition
1	Equal Importance
3	Moderate importance
5	Strong importance
7	Very Strong importance
9	Extreme importance

Pairwise comparison matrix

	x	у	Ь
	(a_{xx})	a _{xy}	a _{xb} \
у	a _{yx}	a_{yy}	a _{yb}
b	∖ a _{bx}	a_{by}	а _{ьь} /


•
$$a_{ij} > 0$$
, $a_{ii} = 1$ and $a_{ij} = \frac{1}{a_{ji}} \forall i, j$.

- For each set of inputs, outputs and undesirable outputs, DM is asked to perform the analogous pairwise comparison
- Four comparison matrices: global comparison, inputs, outputs and undesirable outputs
- $w = (w_x, w_y, w_b)$ is the normalized eigenvector associated with the dominant eigenvalue

- Two different sets of weights are considered:
 - the first one is constructed by assigning the same importance to the three groups of variables (inputs, good and bad outputs) and the same applies inside each group (Zhou et al. 2012: Non-radial model);
 - different pairwise comparison matrices are taken, following a discussion with the water utility staff (AHP-non-radial model).

- Two different sets of weights are considered:
 - the first one is constructed by assigning the same importance to the three groups of variables (inputs, good and bad outputs) and the same applies inside each group (Zhou et al. 2012: Non-radial model);
 - different pairwise comparison matrices are taken, following a discussion with the water utility staff (AHP-non-radial model).

• 96 WWTPs from Acque SpA

3

- 96 WWTPs from Acque SpA
- Inputs and desirable outputs

Input (costs - euros)	Desirable Output
Materials + Energy	Treated water (m^3)
Staff + Maintenance	Kg of sludge (wet matter)
Sludge transport + Sludge disposal	

- 96 WWTPs from Acque SpA
- Inputs and desirable outputs

<u> </u>	
Input (costs - euros)	Desirable Output
Materials + Energy	Treated water (m^3)
Staff + Maintenance	Kg of sludge (wet matter)
Sludge transport + Sludge disposal	

Undesirable output

Looking at data and at the wastewater treatment process:

- you have no pollutants only if you have no water to treat (null jointness)
- pollutant reduction is not possible without increasing the level of the costs (weak disposability)

11 / 18

- 96 WWTPs from Acque SpA
- Inputs and desirable outputs

Input (costs - euros)	Desirable Output
Materials + Energy	Treated water (m^3)
Staff + Maintenance	Kg of sludge (wet matter)
Sludge transport + Sludge disposal	

Undesirable output

Looking at data and at the wastewater treatment process:

- you have no pollutants only if you have no water to treat (null jointness)
- pollutant reduction is not possible without increasing the level of the costs (weak disposability)

Undesirable output

Average Nitrogen concentration of outgoing wastewater

Average Nitrogen concentration of ingoing wastewater

Carosi, D'Inverno, Guerrini, Romano

DEA model for WWTPs

... data choice

Non-radial set of weights

Matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ WPl1 Weights $(1,0,0)$ $(1/3,1/3,1/3)$ $(1/3,1/3,1/3)$ WPl2 Weights $(1/2,1/2,0)$ $1/2 * (1/3,1/3,1/3)$ $1/2 * (1/2,1/2)$ WPl3 Weights $(1/3,1/3,1/3)$ $1/3 * (1/3,1/3,1/3)$ $1/3 * (1/2,1/2)$ $1/3$		Global comparison	Inputs	Good Outputs	Bad Output
WPl ₂ Weights $(1/2, 1/2, 0)$ $1/2 * (1/3, 1/3, 1/3)$ $1/2 * (1/2, 1/2)$	Matrix	$\left(\begin{array}{rrrr}1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1\end{array}\right)$	$ \left(\begin{array}{rrrr} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{array}\right) $	$\left(\begin{array}{cc}1&1\\1&1\end{array}\right)$	
	WPI1 Weights	(1, 0, 0)	(1/3, 1/3, 1/3)		
<i>WPl</i> ₃ Weights $(1/3, 1/3, 1/3)$ $1/3 * (1/3, 1/3, 1/3)$ $1/3 * (1/2, 1/2)$ $1/3$	WPI ₂ Weights	(1/2, 1/2, 0)	1/2 * (1/3, 1/3, 1/3)	1/2 * (1/2, 1/2)	
	WPI ₃ Weights	(1/3, 1/3, 1/3)	1/3 * (1/3, 1/3, 1/3)	1/3 * (1/2, 1/2)	1/3

AHP-non-radial set of weights

	Global comparison	Inputs	Good Outputs	Bad Output
Matrix	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{rrrr}1 & 1 & 5\\1 & 1 & 5\\1/5 & 1/5 & 1\end{array}\right)$	$\left(\begin{array}{cc} 1 & 7 \\ 1/7 & 1 \end{array}\right)$	
WPI1 Weights	(1,0,0)	(0.455, 0.455, 0.09)		
WPI ₂ Weights	(0.75, 0.25, 0)	0.75 * (0.455, 0.455, 0.09)	0.25 * (0.875, 0.125)	
WPI ₃ Weights	(0.149, 0.066, 0.785)	0.149 * (0.455, 0.455, 0.09)	0.066 * (0.875, 0.125)	0.785

A.

. ⊒ → æ

Results

	WPI ₀	WPI_1	WPI_2	WPI_3
Non-radial				
Mean	0.430	0.617	0.504	0.468
Std. Dev.	0.322	0.273	0.343	0.347
AHP-non-radial				
Mean	0.419	0.609	0.491	0.404
Std. Dev.	0.333	0.283	0.354	0.385
N ^o efficient WWTPs	19	27	27	25

13 / 18

Investigating efficiency explanatory variables

• WPI1, WPI2, WPI3 indices for 96 WWTPs

Investigating efficiency explanatory variables

- WPI1, WPI2, WPI3 indices for 96 WWTPs
- The following relevant operational variables are considered
 - Age
 - Size (Population equivalent)
 - Sewage system
 - 4 Level of treatment
 - 5 Technologies
 - **6** Estimated Dry Weather Flow
 - Wastewater discharged by industrial and agricultural activities

Investigating efficiency explanatory variables

- WPI1, WPI2, WPI3 indices for 96 WWTPs
- The following relevant operational variables are considered
 - Age
 - Size (Population equivalent)
 - Sewage system
 - 4 Level of treatment
 - 5 Technologies
 - Stimated Dry Weather Flow
 - Wastewater discharged by industrial and agricultural activities
- Kruskal-Wallis test (0.05 level of significance) on WPI₁, WPI₂, WPI₃ for both non-radial model and AHP-non-radial model

14 / 18

Kruskal-Wallis results - Non radial model

Non-radial				WPI1				WPI ₂				WPI ₃	
Explanatory factor	Total WWTPs	% Eff.	Mean	Std. Dev.	Test	% Eff.	Mean	Std. Dev.	Test	% Eff.	Mean	Std. Dev.	Test
Year													
<1985	44	27%	0.627	0.267	0.6698	27%	0.543	0.310	0.084	25%	0.502	0.318	0.074
≥ 1985	52	29%	0.609	0.280		29%	0.471	0.368		27%	0.439	0.370	
PE													
<2,000	57	25%	0.612	0.260	0.0176	25%	0.451	0.349	0.0077	21%	0.386	0.339	0.0005
2,000 - 10,000	29	21%	0.547	0.269		21%	0.498	0.293		21%	0.509	0.301	
10,000 - 150,000	10	70%	0.849	0.250		70%	0.822	0.296		70%	0.814	0.305	
Sewage System													
Combined	39	18%	0.554	0.258	0.0659	18%	0.423	0.317	0.0682	15%	0.379	0.306	0.0752
Separate	57	35%	0.660	0.276		35%	0.559	0.351		33%	0.528	0.363	
Kind of Treatment													
Secondary treatment	92	25%	0.600	0.266	0.0114	25%	0.483	0.334	0.0114	23%	0.445	0.336	0.0092
Tertiary treatment	4	100%	1.000	0.000		100%	1.000	0.000		100%	1.000	0.000	
Technologies													
Others	6	50%	0.719	0.313	0.4312	50%	0.681	0.364	0.2146	50%	0.626	0.410	0.3034
Activated sludge	90	27%	0.610	0.270		27%	0.492	0.340		24%	0.457	0.342	
Dry Weather Flow													
<100.000	63	22%	0.592	0.257	0.0294	22%	0.439	0.336	0.0022	19%	0.380	0.326	0.0002
100,000 - 500,000	25	28%	0.594	0.290		28%	0.549	0.316		28%	0.563	0.319	
>500.000	8	75%	0.886	0.217		75%	0.873	0.237		75%	0.858	0.266	
% industrial WW													
No activity	60	22%	0.595	0.254	0.3927	22%	0.443	0.332	0.0476	20%	0.396	0.331	0.0094
< 10%	26	35%	0.620	0.307		35%	0.573	0.340		31%	0.546	0.340	
>10%	10	50%	0.742	0.281		50%	0.691	0.350		50%	0.698	0.347	

3

...Kruskal-Wallis results - AHP-Non radial model

AHP-non-radial Explanatory factor	Total WWTPs	WPI1				WPI ₂				WPI ₃			
		% Eff.	Mean	Std. Dev.	Test	% Eff.	Mean	Std. Dev.	Test	% Eff.	Mean	Std. Dev.	Test
Year													
<1985	44	27%	0.640	0.268	0.2167	27%	0.540	0.324	0.0488	25%	0.440	0.363	0.0479
≥ 1985	52	29%	0.584	0.295		29%	0.449	0.375		27%	0.373	0.403	
PE													
<2,000	57	25%	0.605	0.274	0.0408	25%	0.428	0.363	0.002	21%	0.297	0.375	0.0001
2,000 - 10,000	29	21%	0.542	0.273		21%	0.500	0.293		21%	0.475	0.317	
10,000 - 150,000	10	70%	0.829	0.279		70%	0.826	0.285		70%	0.807	0.319	
Sewage System													
Combined	39	18%	0.526	0.267	0.0137	18%	0.419	0.318	0.1597	15%	0.316	0.325	0.1781
Separate	57	35%	0.667	0.282		35%	0.540	0.370		33%	0.464	0.413	
Kind of Treatment													
Secondary treatment	92	25%	0.593	0.277	0.0114	25%	0.469	0.344	0.0114	23%	0.378	0.372	0.0092
Tertiary treatment	4	100%	1.000	0.000		100%	1.000	0.000		100%	1.000	0.000	
Technologies													
Others	6	50%	0.702	0.339	0.4958	50%	0.642	0.395	0.3327	50%	0.562	0.481	0.3883
Activated sludge	90	27%	0.603	0.280		27%	0.481	0.351		24%	0.393	0.378	
Dry Weather Flow													
<100.000	63	22%	0.587	0.271	0.0445	22%	0.418	0.351	0.0007	19%	0.292	0.360	0.0001
100,000 - 500,000	25	28%	0.582	0.293		28%	0.555	0.307		28%	0.541	0.328	
>500,000	8	75%	0.870	0.242		75%	0.868	0.245		75%	0.853	0.280	
% industrial WW													
No activity	60	22%	0.588	0.268	0.2202	22%	0.426	0.346	0.0326	20%	0.307	0.367	0.0002
< 10%	26	35%	0.605	0.315		35%	0.575	0.335		31%	0.527	0.353	
>10%	10	50%	0.752	0.269		50%	0.660	0.379		50%	0.663	0.390	

э

Concluding remarks

- The environmental efficiency of 96 Tuscan wastewater treatment plants is investigated
- A new integrated AHP/directional distance function model is proposed
- The nitrogen in the outgoing water is considered as undesirable output
- Efficiency determinants are identified among wastewater treatment plant features.

17 / 18

Concluding remarks

- The environmental efficiency of 96 Tuscan wastewater treatment plants is investigated
- A new integrated AHP/directional distance function model is proposed
- The nitrogen in the outgoing water is considered as undesirable output
- Efficiency determinants are identified among wastewater treatment plant features.

Thank you for your attention!

References I

- Ali, A. I. and Seiford, L. M. (1990). Translation invariance in data envelopment analysis. Operations Research Letters, 9(6):403–405.
- Berg, S. and Marques, R. (2011). Quantitative studies of water and sanitation utilities: a benchmarking literature survey. Water Policy, 13(5):591–606.
- Chambers, R. G., Chung, Y., and Färe, R. (1996). Benefit and distance functions. Journal of economic theory, 70(2):407-419.
- Chambers, R. G., Chung, Y., and Färe, R. (1998). Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98(2):351–364.
- De Witte, K. and Marques, R. C. (2010). Influential observations in frontier models, a robust non-oriented approach to the water sector. Annals of Operations Research, 181(1):377–392.
- Färe, R. and Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: comment. European Journal of Operational Research, 157(1):242–245.
- Färe, R., Grosskopf, S., Lovell, C. K., and Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. The review of Economics and Statistics, pages 90–98.
- Fuentes, R., Torregrosa, T., and Ballenilla, E. (2015). Conditional order-m efficiency of wastewater treatment plants: The role of environmental factors. Water, 7(10):5503–5524.
- Fukuyama, H. and Weber, W. L. (2009). A directional slacks-based measure of technical inefficiency. Socio-Economic Planning Sciences, 43(4):274–287.
- Hernández-Sancho, F., Molinos-Senante, M., Sala-Garrido, R., and Del Saz-Salazar, S. (2012). Tariffs and efficient performance by water suppliers: an empirical approach. Water Policy, 14(5):854–864.
- Kuosmanen, T. (2005). Weak disposability in nonparametric production analysis with undesirable outputs. American Journal of Agricultural Economics, 87(4):1077–1082.
- Liu, J. S., Lu, L. Y., and Lu, W.-M. (2016). Research fronts in data envelopment analysis. Omega, 58:33-45.
- Molinos-Senante, M., Hernández-Sancho, F., Mocholí-Arce, M., and Sala-Garrido, R. (2014). Economic and environmental performance of wastewater treatment plants: potential reductions in greenhouse gases emissions. *Resource and Energy Economics*, 38:125–140.

(日) (周) (三) (三)

References II

- Molinos-Senante, M., Sala-Garrido, R., and Lafuente, M. (2015). The role of environmental variables on the efficiency of water and sewerage companies: a case study of Chile. Environmental Science and Pollution Research, 22(13):10242–10253.
- Picazo-Tadeo, A. J., Sáez-Fernández, F. J., and González-Gómez, F. (2008). Does service quality matter in measuring the performance of water utilities? Utilities Policy, 16(1):30–38.
- Seiford, L. M. and Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142(1):16–20.
- UN General Assembly (2015). Transforming our world: the 2030 agenda for sustainable development. New York: United Nations.
- Worthington, A. C. (2014). A review of frontier approaches to efficiency and productivity measurement in urban water utilities. Urban Water Journal, 11(1):55–73.
- Zhou, P., Ang, B., and Wang, H. (2012). Energy and CO₂ emission performance in electricity generation: a non-radial directional distance function approach. *European Journal of Operational Research*, 221(3):625–635.

18 / 18

A B F A B F