

3rd International Seminar on Water Resources Management Governance and Performance of water utilities: tools and best practices Friday 27 January 2016 **Pisa**, Italy Innovation and circular economy in municipal wastewater treatment: the European experience of SMART-Plant

Francesco Fatone and the SMART-Plant Consortium

Supported by the Horizon 2020 Framework Programme of the European Union

The SMART-Plant Consortium

The SMART-Plant partners

UNIVERSITÀ POLITECNICA DELLE MARCHE

LabICAB

- 8 Research Organizations
- 12 Technology/Service Providers
- 6 Water utilities

Outline

- Water utility pathways in a circular economy
- The SMART-Plant business model and exploitation strategy
- The SMART-Plant innovative technologies
- The SMART-Plant barriers
- The SMART-Plant perspectives

Water utility pathways in the circular economy

Water utilities can become engines for the circular economy by following three interrelated pathways:

The water pathway
The material pathway
The energy pathway

Water Utility Pathways in a Circular Economy

The water pathway

The materials pathway

Products

Water Utility Pathways in a Circular Economy

www.smart-plant.eu

The energy pathway

UNIVERSITÀ POLITECNICA DELLE MARCHE

LabICAB

Pathway Drivers and Enablers

- Consumers
- Industry
- Regulation
- Infrastructure
- Urban and Basin Economies

Pathway Boosters

- Integrated Urban Resource Management
- Connecting to Stakeholders beyond Traditional Boundaries (Urban and Basin)
- Leadership
- Innovation
- New Business Models

Pathway junctions

- Water-Wise Communities
- Industry
- Wastewater Treatment Plants
- Drinking Water Treatment Plants
- Agriculture
- Natural Environment
- Energy Generation

SMART-Plant open the pathway to deliver circular economy

Resources embedded to municipal wastewater

Parameter	Value
Reusable water (m ³ /capita year)	80-120
Cellulose (kg/capita year)	5-7
Biopolymers; PHA (kg/capita year)	2-4
Phosphorus in P precursors (kg/capita year)	0.5-1.5
Nitrogen in N precursors (kg/capita year)	4-5
Methane (m ³ / capita year)	12-13
Organic Fertilizer (P-rich compost) (kg/capita year)	9-10

Verstraete et al. (2009) *Bioresource Technology* 100, 5537–5545 Salehizadej and van Loosdrecht (2004) *Biotechnology Advances* 22, 261–279

The overall target

The overall target of SMART-Plant is to validate and to address to the market a portfolio of SMARTechnologies that, singularly or combined, can renovate and upgrade existing wastewater treatment plants and give the added value of instigating the paradigm change towards efficient wastewater-based bio-refineries.

The SMARTechnologies

www.smart-plant.eu

SMART-Pla

UNIVERSITÀ POLITECNICA | LabICAB

The SMART-Plant integrated WWTPs

SMARTec	Integrated	Key enabling process(es)	SMART-product(s)
h n.	municipal WWTP		
1	Geestmerambacht	Upstream dynamic fine-screen	Cellulosic sludge, refined
	(Netherlands)	and post-processing of cellulosic	clean cellulose
		sludge	
2a	Karmiel (Israel)	Mainstream polyurethane-based	Biogas, Energy-efficient
		anaerobic biofilter	water reuse
2b	Manresa (Spain)	Mainstream SCEPPHAR	P-rich sludge, PHA
3	Cranfield (UK)	Mainstream tertiary hybrid ion	Nutrients
		exchange	
4a	Carbonera (Italy)	Sidestream SCENA+conventional	P-rich sludge, VFA
		AD	
4b	Psyttalia (Greece)	Sidestream SCENA+enhanced AD	P-rich sludge
5	Carbonera (Italy)	Sidestream SCEPPHAR	PHA, struvite, VFA

Advantages for water treatment, with resource recovery

The merger between water treatment and resource recovery, provided by SMART-Plant is a great opportunity for the water utilities and chemicals / material processing industry to enable synergis through new circular models

AGENDA

Schematic view of SMART-Plant Model

www.smart-plant.eu

SMART-Pla

AGENDA

SMART-Plant portfolio encompasses 4 segments

SMART- Product portfolio with key product offer by strategic pillar to guide exploitation

End use for recovered resources fit to water utility plants

Recovered resources portfolio

AGENDA

SMART-Plant delvers a multifolded set of benefits

Efficient advanced technologies for wastewater plants, to improve nutrients removal and overall compliance in existing plants

Benefits from nutrients recovery

Benefits from energy efficiency

Benefits from reduced sludge

Revenue streams from resource recovery ready for the chemicals / plastics / construction industry segments

More efficient waste water plants with reduced waste and energy footprint

Raw material sources for the Chemicals value chain

Economic benefits depends on the actual scenario

	UWWTPs size < 150 K PE	UWWTPs size > 150 K PE	
Case SMART-Plant recovery N and P			
Saving N Removal EUR/PE/Y			
Thereof Energy from Biogas			
Saving P Removal EUR/PE/Y			
Thereof Energy from Biogas			
Total			
PHA EUR/PE/Y			
Cellulose EUR/PE/Y			
Struvite EUR/PE/Y			
NH4SO4 EUR/PE/Y			
P rich composte EUR/PE/Y			
Butyrric acid EUR/PE/Y			
Propionic acid EUR/PE/Y			
Acetic acid EUR/PE/Y			
Total (theoretical) EUR/PE/Y			
Possible scenarios			
Subtotal PHA/Struvite EUR/PE/Y			
Subtotal VFA/Struvite EUR/PE/Y			
Subtotal Cellulose/PHA EUR/PE/Y			
Subtotal NH4SO4/P compost EUR/PE/Y			
AVERAGE EUK/PE/Y			
Operating costs - EUR/PE/Y (est 30/20%)			
EBITDA (average) products EUK/PE/Y	0,31 €/PE/Y	/,21 €/PE/Y	
 Total benefits (top down)			
52h	17,02 €/PE/Y	17,87 €/PE/\'	
	B www.	smart-plant.eu	T-Plant

AGENDA

Main SMART-Plant barriers towards the closed cycle

- Regulatory barriers (Innovation Deal proposed)
- Market uptake
- Customer acceptance and public perception
- Stability of the secondary raw material characteristics
- Water utility sceptical approach towards innovation and circular economy

www.smart-plant.eu

Supported by the Horizon 2020 Framework Programme of the European Union

The target is to make the entire SMART-Plant platform commercially available through a JV among partners

Target **One Common Platform** All SMART-Plant technologies to be available: Large choice of technology fit Flexibility for customisation Follow Sustainability Leadership Principles) Expertise in the end market for recovered > resources is the key enabler Right fit approach for technology is the guide

SMART-Plant target is to be leader for the circular economy in the water cycle by focusing on right fit of technology and market adoption for recovered resources

